Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.4 - Indefinite Integrals and the Net Change Theorem - 5.4 Exercises - Page 415: 6

Answer

$5x + \frac{4}{3}{x^{3/2}} + C$

Work Step by Step

$$\eqalign{ & \int {\left( {5 + 2\sqrt x } \right)} dx \cr & {\text{Rewrite}}{\text{, use the radical properties}} \cr & = \int {\left( {5 + 2{x^{1/2}}} \right)} dx \cr & {\text{Use the sum rule for integration}} \cr & = \int 5 dx + \int {2{x^{1/2}}} dx \cr & {\text{Pull out the constants}} \cr & = 5\int {dx} + 2\int {{x^{1/2}}} dx \cr & {\text{use the power rule for integration }}\int {{x^n}dx} = \frac{{{x^{n + 1}}}}{{n + 1}} + C \cr & = 5\left( {\frac{{{x^{0 + 1}}}}{{0 + 1}}} \right) + 2\left( {\frac{{{x^{1/2 + 1}}}}{{1/2 + 1}}} \right) + C \cr & {\text{Simplify}} \cr & = 5\left( x \right) + 2\left( {\frac{{{x^{3/2}}}}{{3/2}}} \right) + C \cr & = 5x + \frac{4}{3}{x^{3/2}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.