Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.4 - Indefinite Integrals and the Net Change Theorem - 5.4 Exercises - Page 415: 29

Answer

$\frac{{1011}}{2}$

Work Step by Step

$$\eqalign{ &\text{Let }I= \int_1^4 {\left( {8{t^3} - 6{t^{ - 2}}} \right)} dt \cr & {\text{From Table 1 }}\left( {{\text{page 410}}} \right){\text{ }}\int {{x^n}} dx = \frac{{{x^{n + 1}}}}{{n + 1}} + C,{\text{ then}} \cr & I = \left[ {\frac{{8{t^{3 + 1}}}}{{3 + 1}} - 6\left( {\frac{{{t^{ - 2 + 1}}}}{{ - 2 + 1}}} \right)} \right]_1^4 \cr & = \left[ {\frac{{8{t^4}}}{4} - 6\left( {\frac{{{t^{ - 1}}}}{{ - 1}}} \right)} \right]_1^4 \cr & = \left[ {2{t^4} + \frac{6}{t}} \right]_1^4 \cr & {\text{Using the fundamental theorem of calculus}}{\text{, part 2}} \cr &I = \left[ {2{{\left( 4 \right)}^4} + \frac{6}{{\left( 4 \right)}}} \right] - \left[ {2{{\left( 1 \right)}^4} + \frac{6}{{\left( 1 \right)}}} \right] \cr & {\text{Simplifying}} \cr & I = \frac{{1027}}{2} - 8 \cr & = \frac{{1011}}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.