Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.4 - Indefinite Integrals and the Net Change Theorem - 5.4 Exercises - Page 415: 37

Answer

$\frac{8}{3}\sqrt 3 $

Work Step by Step

$$\eqalign{ & \text{Let }I=\int_{\pi /6}^{\pi /3} {4{{\sec }^2}y} dy \cr & {\text{Pull out the constant}} \cr & I = 4\int_{\pi /6}^{\pi /3} {{{\sec }^2}y} dy \cr & {\text{Integrate}}{\text{, recall that }}\int {{{\sec }^2}x} dx = \tan x + C \cr & I= 4\left[ {\tan y} \right]_{\pi /6}^{\pi /3} \cr & {\text{Using the fundamental theorem of calculus}}{\text{, part 2}} \cr & I = 4\left[ {\tan \left( {\frac{\pi }{3}} \right) - \tan \left( {\frac{\pi }{6}} \right)} \right] \cr & {\text{Simplify}} \cr & I= 4\left( {\sqrt 3 - \frac{{\sqrt 3 }}{3}} \right) \cr & = \frac{8}{3}\sqrt 3 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.