Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.4 - Indefinite Integrals and the Net Change Theorem - 5.4 Exercises - Page 415: 34

Answer

$ - \frac{4}{3}$

Work Step by Step

$$\eqalign{ & \text{Let }I=\int_{ - 1}^1 {t{{\left( {1 - t} \right)}^2}} dt \cr & {\text{Expand the binomial}}{\text{, recall that }}{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2} \cr & I = \int_{ - 1}^1 {t\left( {1 - 2t + {t^2}} \right)} dt \cr & = \int_{ - 1}^1 {\left( {t - 2{t^2} + {t^3}} \right)} dt \cr & {\text{Use the power rule for integration}} \cr & I = \left[ {\frac{{{t^2}}}{2} - \frac{{2{t^3}}}{3} + \frac{{{t^4}}}{4}} \right]_{ - 1}^1 \cr & {\text{Using the fundamental theorem of calculus}}{\text{, part 2}} \cr & I= \left[ {\frac{{{{\left( 1 \right)}^2}}}{2} - \frac{{2{{\left( 1 \right)}^3}}}{3} + \frac{{{{\left( 1 \right)}^4}}}{4}} \right] - \left[ {\frac{{{{\left( { - 1} \right)}^2}}}{2} - \frac{{2{{\left( { - 1} \right)}^3}}}{3} + \frac{{{{\left( { - 1} \right)}^4}}}{4}} \right] \cr & = \frac{1}{{12}} - \frac{{17}}{{12}} \cr & = - \frac{4}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.