Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.4 - Indefinite Integrals and the Net Change Theorem - 5.4 Exercises - Page 415: 1

Answer

See proof

Work Step by Step

$$\eqalign{ & \int {\ln x} dx = x\ln x - x + C \cr & {\text{Let }}F\left( x \right) = x\ln x - x + C{\text{ an antiderivative of }}\ln x,{\text{ we have to determine}} \cr & \frac{d}{{dx}}\left[ {x\ln x - x + C} \right] \cr & {\text{Differentiating }} \cr & \underbrace {\frac{d}{{dx}}\left[ {x\ln x} \right]}_{{\text{Use product rule}}} - \frac{d}{{dx}}\left[ x \right] + \frac{d}{{dx}}\left[ C \right] \cr & = x\frac{d}{{dx}}\left[ {\ln x} \right] + \ln x\frac{d}{{dx}}\left[ x \right] - \frac{d}{{dx}}\left[ x \right] + \frac{d}{{dx}}\left[ C \right] = \ln x \cr & {\text{computing derivatives}} \cr & = x\left( {\frac{1}{x}} \right) + \ln x\left( 1 \right) - 1 + 0 \cr & {\text{Simplifying}} \cr & 1 + \ln x - 1 = \ln x \cr & {\text{The statement is true}}{\text{, then the formula is correct}}{\text{.}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.