Answer
$ - 3\cot x + C$
Work Step by Step
$$\eqalign{
& \text{ Let }I=\int {3{{\csc }^2}t} dt \cr
& {\text{Pull out the constant}}{\text{, apply }}\int {cf\left( x \right)} dx = c\int {f\left( x \right)} dx \cr
& I = 3\int {{{\csc }^2}t} dt \cr
& {\text{From the table of indefinite integrals }} \cr
& \int {{{\csc }^2}x} dx = - \cot x + C,{\text{ then}} \cr
& I=3\int {{{\csc }^2}t} dt = 3\left( { - \cot x} \right) + C \cr
& = - 3\cot x + C \cr} $$