Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.7 Graphing Quadratics from Standard Form - 4.7 Exercises - Page 387: 47

Answer

A) Vertex: $(-4 ,86.8)$ B) Vertical intercept: $(0,82)$ Horizontal intercepts: $(-21,0),(13,0)$ C) See the graph D) Domain: All real numbers. Range: $(-\infty, 86.8] $

Work Step by Step

Given \begin{equation} \begin{aligned} Q(p)&=-0.3 p^2-2.4 p+82\\ a & =-0.3, \quad b=-2.4, \quad c=82 \end{aligned} \end{equation} Step 1: Determine whether the graph opens up or down. The parabola opens up when the constant $a$ is positive and opens down when $a$ negative. This parabola opens down since $a$ is negative. Part A) Step 2: Find the vertex. This function is in standard form for a quadratic, so we can use the formula: \begin{equation} \begin{aligned} &p=\frac{-b}{2 a}=-\frac{-2.4}{2\cdot(-0.3)}=-4 \\ & \begin{aligned} Q(-4) & =-0.3(-4)^2-2.4(-4)+82 \\ & =86.8 \end{aligned} \end{aligned} \end{equation} The vertex of the function is $(-4 ,86.8)$. Part B) Step 3: Find the vertical and horizontal intercepts. 1) Find the vertical intercept which is equal to the constant $c$ if the parabola is in its standard form. \begin{equation} \begin{aligned} y& =82. \end{aligned} \end{equation} Vertical intercept: $(0,82)$. 2) Find the horizontal intercept by setting the function to zero and solve. \begin{equation} \begin{aligned} -0.3 p^2-2.4 p+82& =0 \end{aligned} \end{equation} \begin{equation} \begin{aligned} p & =\frac{-(-2.4) \pm \sqrt{(-2.4)^2-4(-0.3)(82)}}{2 \cdot(-0.3)} \\ & =-\frac{2.4 \pm \sqrt{104.16}}{0.6} \\ &\approx -( 4 \pm 17) \end{aligned} \end{equation} The solutions are: \begin{equation} \begin{aligned} & p=-( 4 + 17)=-21 \\ & p=-( 4 - 17)=13. \end{aligned} \end{equation} Horizontal intercepts: $(-21,0),(13,0)$. Part C) Sketch the graph as shown in the figure. Part D) The domain and range of the function are given below: Domain: All real numbers. Range: $(-\infty, 86.8] $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.