Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.7 Graphing Quadratics from Standard Form - 4.7 Exercises - Page 387: 42

Answer

A) Vertex: $(-2.4333,6.5633)$ B) Vertical intercept: $(0,-11.2)$ Horizontal intercepts: $(-3.912,0),(-0.954,0)$ C) See the graph D) Domain: All real numbers. Range: $(-\infty, 6.5633]$

Work Step by Step

Given \begin{equation} \begin{aligned} f(x)&=-3 x^2-14.6 x-11.2\\ a &=-3 ,\quad b= -14.6 , \quad c= -11.2. \end{aligned} \end{equation} Step 1: Determine whether the graph opens up or down. The parabola opens up when the constant $a$ is positive and opens down when $a$ negative. This parabola opens down since $a$ is negative. Part A) Step 2: Find the vertex. This function is in standard form for a quadratic, so we can use the formula: \begin{equation} \begin{aligned} x&=\frac{b}{2a}=-\frac{(-14.6)}{2\cdot (-3)}=-2.4333 \\ P(-1.75) & =-3(-2.4333 )^2-14.6(-2.4333 )-11.2 \\ & =6.5633. \end{aligned} \end{equation} The vertex of the function is $(-2.4333,6.5633)$. Part B) Step 3: Find the vertical and horizontal intercepts. 1) Find the vertical intercept which is equal to the constant $c$ if the parabola is in its standard form. \begin{equation} \begin{aligned} y& = -11.2. \end{aligned} \end{equation} Vertical intercept: $(0,-11.2)$. 2) Find the horizontal intercept by setting the function to zero and solve. \begin{equation} \begin{aligned} -3 x^2-14.6 x-11.2 & =0 \\ 3 x^2+14.6 x+11.2 & =0 \end{aligned} \end{equation} \begin{equation} \begin{aligned} & x=\frac{-14.6 \pm \sqrt{14.6^2-4(3)(11.2)}}{2(3)} \\ & =\frac{-141.6 \pm \sqrt{78.76}}{6} \\ & =-2.4633 \pm 1.479 \end{aligned} \end{equation} \begin{equation} \begin{aligned} & x=-2.4633-1.479=-3.912 \\ & x=-2.4633+1.479=-0.954. \end{aligned} \end{equation} Horizontal intercepts: $(-3.912,0),(-0.954,0)$ Part C) Sketch the graph as shown in the figure. Part D) The domain and range of the function are given below: Domain: All real numbers. Range: $(-\infty, 6.5633]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.