Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.7 Graphing Quadratics from Standard Form - 4.7 Exercises - Page 387: 26

Answer

a) $3.5$ feet b) $0.7927$ seconds and $3.135$ seconds c) $69.52$ feet d) $4.12$ seconds

Work Step by Step

Given \begin{equation} h(t)=-16 t^2+65 t+3.5. \end{equation} a) Set $t=0$ to find the height of the ball when it is hit. \begin{equation} \begin{aligned} h(0) & =-16 \cdot(0)^2+65 \cdot(0)+3.5 \\ & =3.5. \end{aligned} \end{equation} The ball is hit at a height of $3.5$ ft . b) Set $h(t)=50$ to find the time. \begin{equation} \begin{aligned} &-16 t^2+65 t+3.5=50 \\ & -16 t^2+65 t+3.5-50=0 \\ & \frac{-16 t^2+65 t-46.5}{-16}=\frac{0}{-16} \\ & t^2-4.0625 t+2.90625=0. \end{aligned} \end{equation} Use the quadratic formula with $a= 1,\quad b= -4.0625\ ,\quad c = 2.90625$. \begin{equation} \begin{aligned} &t= \frac{-b\pm\sqrt{b^2-4ac}}{2a}\\ & t=\frac{-(-4.0625) \pm \sqrt{(-4.0625)^2-4(1)(2.90625)}}{2(1)} \\ & =\frac{4.0625 \pm \sqrt{4.87890625}}{2}\\ &= \frac{4.0625\pm 2.2088}{2}\\ &= 2.031\pm 1.1044\\ \end{aligned} \end{equation} \begin{equation} \begin{aligned} & t=2.031-1.1044=0.7927 \\ & t=2.031+1.1044=3.135 \end{aligned} \end{equation} The ball reached a height of 50 feet after $0.7927$ seconds and after $3.135$ seconds. c) The time when the ball reached its maximum height is found from: \begin{equation} t=\frac{-b}{2 a}=\frac{-65}{2(-16)}=2.031 \end{equation} The ball reached its maximum height aster $1.75$ seconds. The maximum height of the ball is found from: \begin{equation} \begin{aligned} h(2.031) & =-16 \cdot(2.031)^2+65 \cdot(2.031)+3.5 =69.52. \end{aligned} \end{equation} The maximum height of the ball is $69.52$ feet. d) Set $h=0$ to find the time the ball hit the ground. \begin{equation} \begin{aligned} &-16 t^2+65 t+3.5&= 0. \end{aligned} \end{equation} \begin{equation} \begin{aligned} & t=\frac{-(65) \pm \sqrt{(65)^2-4(-16)(3.5)}}{2(-16)} \\ & =\frac{-65 \pm \sqrt{4449}}{-32}\\ &=-(-2.03125 \pm 2.08440 ). \end{aligned} \end{equation} \begin{equation} \begin{aligned} t & = -(-2.03125 - 2.08440 ) \\ & =4.12 \\ t & =-(-2.03125 + 2.08440 ) \\ & =-0.053. \end{aligned} \end{equation} The ball will hit the ground after about $4.12$ seconds later after being hit.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.