Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.7 Graphing Quadratics from Standard Form - 4.7 Exercises - Page 387: 43

Answer

A) Vertex : $(4.5 ,-52.9)$ B) Vertical intercept: $(0,-44.8)$ Horizontal intercepts: $(-7,0),(16,0)$ C) See the graph D) Domain: All real numbers. Range: $[-52.9,\infty )$

Work Step by Step

Given \begin{equation} \begin{aligned} h(w)&=0.4 w^2-3.6 w-44.8\\ a& = 0.4 ,\quad b= -3.6, \quad c= -44.8. \end{aligned} \end{equation} Step 1: Determine whether the graph opens up or down. The parabola opens up when the constant $a$ is positive and opens down when $a$ negative. This parabola opens up since $a$ is positive. Part A) Step 2: Find the vertex. This function is in standard form for a quadratic, so we can use the formula: \begin{equation} \begin{aligned} & w=\frac{-b}{2 a}=\frac{-(-3.6)}{2(0.4)}=4.5 \\ & \begin{aligned} w(4.5) & =0.4 \cdot 4 .5^2-3.6\cdot 4 .5-44.8 \\ & =-52.9. \end{aligned} \end{aligned} \end{equation} The vertex of the function is $(4.5 ,-52.9)$. Part B) Step 3: Find the vertical and horizontal intercepts. 1) Find the vertical intercept which is equal to the constant $c$ if the parabola is in its standard form. \begin{equation} \begin{aligned} y& = -44.8. \end{aligned} \end{equation} Vertical intercept: $(0,-44.8)$. 2) Find the horizontal intercept by setting the function to zero and solve. \begin{equation} \begin{aligned} & 0.4 w^2-3.6 w-44.8=0 \\ & \left(0.4 w^2-3.6 w-44.8\right) \cdot 10=0.10 \\ & 4 w^2-36 w-448=0 \end{aligned} \end{equation} \begin{equation} \begin{aligned} &w=\frac{-(-36) \pm \sqrt{36^2-4(4)(-448)}}{2(4)} \\ &w=\frac{+36 \pm \sqrt{8464}}{8}\\ &=\frac{36 \pm 92}{8}\\ &=\frac{36 \pm 92}{8} \end{aligned} \end{equation} \begin{equation} \begin{aligned} & w=\frac{36-92}{8}=-7 \\ & w=\frac{36+92}{8}=16. \end{aligned} \end{equation} Horizontal intercepts: $(-7,0),(16,0)$. Part C) Sketch the graph as shown in the figure. Part D) The domain and range of the function are given below: Domain: All real numbers. Range: $[-52.9,\infty )$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.