Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.7 Graphing Quadratics from Standard Form - 4.7 Exercises - Page 387: 44

Answer

A) Vertex: $(-8 ,-9.5)$ B) Vertical intercept: $(0,6.5)$ Horizontal intercepts: $(-14.164,0),(-1.806,0)$ C) See the graph D) Domain: All real numbers. Range: $[-9.5,\infty )$

Work Step by Step

Given \begin{equation} \begin{aligned} f(x)&=0.25 x^2+4 x+6.5\\ a& = 0.25 ,\quad b= 4, \quad c= 6.5. \end{aligned} \end{equation} Step 1: Determine whether the graph opens up or down. The parabola opens up when the constant $a$ is positive and opens down when $a$ negative. This parabola opens up since $a$ is positive. Part A) Step 2: Find the vertex. This function is in standard form for a quadratic, so we can use the formula: \begin{equation} \begin{aligned} & x=\frac{-b}{2 a}=\frac{-4}{2(0.25)}=-8 \\ & \begin{aligned} f(4.5) & =0.25(-8)^2+4(-8)+6.5 \\ & =-9.5. \end{aligned} \end{aligned} \end{equation} The vertex of the function is $(-8 ,-9.5)$. Part B) Step 3: Find the vertical and horizontal intercepts. 1) Find the vertical intercept which is equal to the constant $c$ if the parabola is in its standard form. \begin{equation} \begin{aligned} y& = 6.5 \end{aligned} \end{equation} Vertical intercept: $(0,6.5)$. 2) Find the horizontal intercept by setting the function to zero and solve. \begin{equation} \begin{aligned} \frac{\left(0.25 x^2+4 x+6.5\right) \cdot 10}{0.25} & =\frac{0.10}{0.25} \\ x^2+16 x+26 & =0 \end{aligned} \end{equation} \begin{equation} \begin{aligned} x & =\frac{-16 \pm \sqrt{16^2-4(1)(26)}}{2 \cdot(1)} \\ & =\frac{-16 \pm \sqrt{152}}{2} \\ & =\frac{-16 \pm 12.38828}{2} \end{aligned} \end{equation} \begin{equation} \begin{aligned} & x=\frac{-16-12.38828}{2}=-14.164 \\ & x=\frac{-16+12.38828}{2}=-1.806 \end{aligned} \end{equation} Horizontal intercepts: $(-14.164,0),(-1.806,0)$. Part C) Sketch the graph as shown in the figure. Part D) The domain and range of the function are given below: Domain: All real numbers. Range: $[-9.5,\infty )$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.