Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Chapter R-9 - Cumulative Review Exercises - Page 642: 38

Answer

Graph of $f(x)=\dfrac{1}{3}(x-1)^2+2$

Work Step by Step

Substituting values of $x$ in the given function, $ f(x)=\dfrac{1}{3}(x-1)^2+2 $, results to \begin{array}{c|c|c} \text{If }x=-2: & \text{If }x=1 & \text{If }x=4 \\\\ f(x)=y=\dfrac{1}{3}(x-1)^2+2 & f(x)=y=\dfrac{1}{3}(x-1)^2+2 & f(x)=y=\dfrac{1}{3}(x-1)^2+2 \\\\ y=\dfrac{1}{3}(-2-1)^2+2 & y=\dfrac{1}{3}(1-1)^2+2 & y=\dfrac{1}{3}(4-1)^2+2 \\\\ y=\dfrac{1}{3}(9)+2 & y=\dfrac{1}{3}(0)+2 & y=\dfrac{1}{3}(9)+2 \\\\ y=3+2 & y=0+2 & y=3+2 \\\\ y=5 & y=2 & y=5 .\end{array} Connecting the points $ \left(-2,5\right), \left(1,2\right), \text{ and } \left(4,5\right) $ with a curve gives the graph of $ f(x)=\dfrac{1}{3}(x-1)^2+2 $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.