Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Chapter R-9 - Cumulative Review Exercises - Page 642: 32

Answer

$\{0,4\}$

Work Step by Step

Squaring both sides of the given equation, $ \sqrt{2x+1}-\sqrt{x}=1 $, results to \begin{align*} \left(\sqrt{2x+1}-\sqrt{x}\right)^2&=(1)^2 \\ \left(\sqrt{2x+1}\right)^2-2(\sqrt{2x+1})(\sqrt{x})+\left(\sqrt{x}\right)^2&=(1)^2 &(\text{use }(a+b)^2=a^2+2ab+b^2) \\ 2x+1-2\sqrt{x(2x+1)}+x&=1 \\ 3x+1-2\sqrt{x(2x+1)}&=1 .\end{align*} Using the properties of equality, the equation above is equivalent to \begin{align*} 3x+1-1&=2\sqrt{x(2x+1)} \\ 3x&=2\sqrt{x(2x+1)} .\end{align*} Squaring both sides again, the equation above is equivalent to \begin{align*} (3x)^2&=\left(2\sqrt{x(2x+1)}\right)^2 \\ 9x^2&=4[x(2x+1)] \\ 9x^2&=8x^2+4x .\end{align*} Using the properties of equality, the equation above is equivalent to \begin{align*} 9x^2-8x^2-4x&=0 \\ x^2-4x&=0 \\ x(x-4)&=0 &(\text{factor }x) .\end{align*} Equating each factor to zero (Zero Product Property), then \begin{array}{l|r} x=0 & x-4=0 \\ & x=4 .\end{array} Since both sides of the original equation were raised to an even power, then checking of solutions is a must. That is, \begin{array}{l|r} \text{If }x=0: & \text{If }x=4 \\\\ \sqrt{2(0)+1}-\sqrt{0}\overset{?}=1 & \sqrt{2(4)+1}-\sqrt{4}\overset{?}=1 \\ \sqrt{1}-0\overset{?}=1 & \sqrt{9}-2\overset{?}=1 \\ 1-0\overset{?}=1 & 3-2\overset{?}=1 \\ 1\overset{\checkmark}=1 & 1\overset{\checkmark}=1 .\end{array} Hence, the solution set of the equation $ \sqrt{2x+1}-\sqrt{x}=1 $ is $ \{0,4\} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.