Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Chapter R-9 - Cumulative Review Exercises - Page 642: 27

Answer

$-\dfrac{1875p^{13}}{8}$

Work Step by Step

Using the laws of exponents, the given expression, $ \dfrac{\left(5p^3\right)^4\left(-3p^7\right)}{2p^2\left(4p^4\right)} $, is equivalent to \begin{align*} & \dfrac{\left(5^{1(4)}p^{3(4)}\right)\left(-3p^7\right)}{2p^2\left(4p^4\right)} &(\text{use }\left(a^m\right)^n=a^{mn}) \\\\&= \dfrac{\left(5^{4}p^{12}\right)\left(-3p^7\right)}{2p^2\left(4p^4\right)} \\\\&= \dfrac{\left(5^{4}\cdot(-3)\right)\left(p^{12}\cdot p^7\right)}{\left(2\cdot4\right)\left(p^2\cdot p^4\right)} \\\\&= \dfrac{-1875p^{12+7}}{8p^{2+4}} &(\text{use }a^m\cdot a^n=a^{m+n}) \\\\&= \dfrac{-1875p^{19}}{8p^{6}} \\\\&= -\dfrac{1875}{8}p^{19-6} &(\text{use }\dfrac{a^m}{a^n}=a^{m-n}) \\\\&= -\dfrac{1875p^{13}}{8} .\end{align*} Hence, the expression $ \dfrac{\left(5p^3\right)^4\left(-3p^7\right)}{2p^2\left(4p^4\right)} $ simplifies to $ -\dfrac{1875p^{13}}{8} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.