Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Chapter R-9 - Cumulative Review Exercises - Page 642: 28

Answer

$\dfrac{x+5}{x+4}$

Work Step by Step

The factored form of the given expression, $ \dfrac{x^2-9}{x^2+7x+12}\div\dfrac{x-3}{x+5} $, is \begin{align*} & \dfrac{(x+3)(x-3)}{x^2+7x+12}\div\dfrac{x-3}{x+5} &(\text{use }x^2-y^2=(x+y)(x-y) \\\\&= \dfrac{(x+3)(x-3)}{(x+3)(x+4)}\div\dfrac{x-3}{x+5} &(\text{use factoring of trinomials}) .\end{align*} Multiplying by the reciprocal of the divisor, the expression above is equivalent to \begin{align*} & \dfrac{(x+3)(x-3)}{(x+3)(x+4)}\cdot\dfrac{x+5}{x-3} .\end{align*} Cancelling the common terms between the numerator and the denominator, the expression above is equivalent to \begin{align*}\require{cancel} & \dfrac{(\cancel{x+3})(\cancel{x-3})}{(\cancel{x+3})(x+4)}\cdot\dfrac{x+5}{\cancel{x-3}} \\\\&= \dfrac{x+5}{x+4} .\end{align*} Hence, the expression $ \dfrac{x^2-9}{x^2+7x+12}\div\dfrac{x-3}{x+5} $ simplifies to $ \dfrac{x+5}{x+4} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.