Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 11 - Quadratic Functions and Equations - 11.8 Problem Solving and Quadratic Functions - 11.8 Exercise Set - Page 756: 42

Answer

(a) $p\left( s \right)=-\frac{1}{150}{{s}^{2}}-\frac{1}{10}s+\frac{68}{3}$. (b) $1\ \text{ft}$.

Work Step by Step

(a) The function in standard form is written as $p\left( t \right)=a{{t}^{2}}+bt+c$,where t denotes the time. So, the equations will be: Put $t=10$in the equation $p\left( t \right)=a{{t}^{2}}+bt+c$. $a{{\left( 10 \right)}^{2}}+10b+c=21$ …… (1) Put $t=20$ in the equation $p\left( t \right)=a{{t}^{2}}+bt+c$. …… (2) Put $t=40$in the equation $p\left( t \right)=a{{t}^{2}}+bt+c$. …… (3) Now, subtract equation 2 from equation 1: $\begin{align} & a{{\left( 10 \right)}^{2}}+b\left( 10 \right)+c-21-\left( a{{\left( 20 \right)}^{2}}+b\left( 20 \right)+c-18 \right)=0 \\ & a{{\left( 10 \right)}^{2}}+b\left( 10 \right)+c-21-a{{\left( 20 \right)}^{2}}-b\left( 20 \right)-c+18=0 \\ & a\left( 100-400 \right)+b\left( 10-20 \right)=3 \end{align}$ On further simplification: $\begin{align} & a\left( -300 \right)+b\left( -10 \right)=3 \\ & -300a-10b=3 \end{align}$ Now, …… (4) $-300a-10b=3$ Now, subtract equation 2 from equation 3: $\begin{align} & a{{\left( 40 \right)}^{2}}+b\left( 40 \right)+c-8-\left( a{{\left( 20 \right)}^{2}}+b\left( 20 \right)+c-18 \right)=0 \\ & a{{\left( 40 \right)}^{2}}+b\left( 40 \right)+c-8-a{{\left( 20 \right)}^{2}}-b\left( 20 \right)-c+18=0 \\ & a\left( 1600-400 \right)+b\left( 40-20 \right)=-10 \\ & 1200a+20b=-10 \end{align}$ Now, $1200a+20b=-10$ …… (5) Now multiply equation 4 by 4 $\begin{align} & 4\left( -300a-10b-3 \right)=0 \\ & -1200a-40b-12=0 \\ \end{align}$ Now, add the above equation to equation 5: $\begin{align} & 1200a+20b+10+\left( -1200a-40b-12 \right)=0 \\ & 1200a+20b+10-1200a-40b-12=0 \\ & -20b-2=0 \\ & -20b=2 \end{align}$ Solve further, $\begin{align} & -20b=2 \\ & b=-\frac{2}{20} \\ & =-\frac{1}{10} \end{align}$ Now, substituting the value of b in any of the above: $\begin{align} & -300a-10b=3 \\ & -300a-10\cdot \left( -\frac{1}{10} \right)=3 \\ & -300a+1=3 \\ & -300a=2 \end{align}$ Solve further, $\begin{align} & a=-\frac{2}{300} \\ & =-\frac{1}{150} \end{align}$ Now, substitute the values of a and b in equation 1, to get the value of c: $\begin{align} & \left( -\frac{1}{150} \right){{\left( 10 \right)}^{2}}+\left( -\frac{1}{10} \right)\left( 10 \right)+c=21 \\ & \left( -\frac{1}{150} \right)\cdot 100+\left( -\frac{1}{10} \right)\cdot 10+c=21 \\ & -\frac{2}{3}-1+c=21 \\ & -\frac{5}{3}+c=21 \end{align}$ On further simplification: $\begin{align} & c=21+\frac{5}{3} \\ & =\frac{68}{3} \end{align}$ Thus, the quadratic equation of the given data will be written as: $p\left( s \right)=-\frac{1}{150}{{s}^{2}}-\frac{1}{10}s+\frac{68}{3}$. (b) $p\left( s \right)=-\frac{1}{150}{{s}^{2}}-\frac{1}{10}s+\frac{68}{3}$ Now, take $s=50$and substitute in the quadratic equation, So, $\begin{align} & p\left( 50 \right)=-\frac{1}{150}{{s}^{2}}-\frac{1}{10}s+\frac{68}{3} \\ & =-\frac{1}{150}{{\left( 50 \right)}^{2}}-\frac{1}{10}\left( 50 \right)+\frac{68}{3} \\ & =-\frac{50}{3}-5+\frac{68}{3} \\ & =-5+6 \end{align}$ Therefore, the lift distance for a flow rate of 50 gal per min is 1 ft.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.