Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 11 - Quadratic Functions and Equations - 11.8 Problem Solving and Quadratic Functions - 11.8 Exercise Set - Page 756: 38

Answer

$f\left( x \right)=-\frac{1}{3}{{x}^{2}}+5x-12$

Work Step by Step

$f\left( x \right)=a{{x}^{2}}+bx+c$ Substitute the data point$\left( -3,-30 \right)$ into the standard quadratic equation$f\left( x \right)=a{{x}^{2}}+bx+c$, $-30=a{{\left( -3 \right)}^{2}}+b\left( -3 \right)+c$ Substitute the data point$\left( 3,0 \right)$ into the standard quadratic equation$f\left( x \right)=a{{x}^{2}}+bx+c$, $0=a{{\left( 3 \right)}^{2}}+b\left( 3 \right)+c$ Substitute the data point$\left( 6,6 \right)$ into the standard quadratic equation$f\left( x \right)=a{{x}^{2}}+bx+c$, $6=a{{\left( 6 \right)}^{2}}+b\left( 6 \right)+c$ Simplify the equations further as shown below, $-30=9a-3b+c$ …… (1) $0=9a+3b+c$ …… (2) $6=36a+6b+c$ …… (3) Add equation (2) and (1), $\begin{align} & \underline{\begin{align} & -30=9a-3b+c \\ & 0=9a+3b+c \end{align}} \\ & -30=18a+2b \\ \end{align}$ Further, $-15=9a+c$ …...(4) Multiply equation (2) by 2 and subtract it from equation (3), $\begin{align} & \underline{\begin{align} & 6=36a+6b+c \\ & 0=18a-6b-2c \end{align}} \\ & 6=18a-c \\ \end{align}$ Further, $6=18a-c$ …..(5) Add equation (4) and (5), $\begin{align} & \underline{\begin{align} & -6=18a-c \\ & -15=9a+c \end{align}} \\ & -9=27a \\ \end{align}$ Further, $\begin{align} & a=-\frac{9}{27} \\ & =-\frac{1}{3} \end{align}$ Therefore, $a=-\frac{1}{3}$ Substitute $a=-\frac{1}{3}$ into the equation $6=18a-c$, $\begin{align} & 6=18\left( -\frac{1}{3} \right)-c \\ & 6=-6-c \\ & 12=-c \\ & c=-12 \end{align}$ Therefore, $c=-12$ Substitute $a=-\frac{1}{3}$ and $c=-12$ into the equation $0=9a+3b+c$, $\begin{align} & 0=9\left( -\frac{1}{3} \right)+3b+12 \\ & 0=-3+3b-12 \\ & 0=-15+3b \\ & 15=3b \end{align}$ Therefore, $b=5$ Substitute the values $a=-\frac{1}{3},b=5$ and $c=-12$ in the standard quadratic equation$f\left( x \right)=a{{x}^{2}}+bx+c$, $f\left( x \right)=-\frac{1}{3}{{x}^{2}}+5x-12$. Therefore, the quadratic function that fits the set of data points $\left( -3,-30 \right),\left( 3,0 \right),\left( 6,6 \right)$ is $f\left( x \right)=-\frac{1}{3}{{x}^{2}}+5x-12$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.