Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 11 - Quadratic Functions and Equations - 11.8 Problem Solving and Quadratic Functions - 11.8 Exercise Set - Page 756: 37

Answer

$f\left( x \right)=-\frac{1}{4}{{x}^{2}}+3x-5$

Work Step by Step

$f\left( x \right)=a{{x}^{2}}+bx+c$ Substitute the data point$\left( 2,0 \right)$ into the standard quadratic equation$f\left( x \right)=a{{x}^{2}}+bx+c$, $0=a{{\left( 2 \right)}^{2}}+b\left( 2 \right)+c$ Substitute the data point$\left( 4,3 \right)$ into the standard quadratic equation$f\left( x \right)=a{{x}^{2}}+bx+c$, $3=a{{\left( 4 \right)}^{2}}+b\left( 4 \right)+c$ Substitute the data point$\left( 12,-5 \right)$ into the standard quadratic equation$f\left( x \right)=a{{x}^{2}}+bx+c$, $-5=a{{\left( 12 \right)}^{2}}+b\left( 12 \right)+c$ Simplify the equations further as shown below, $0=4a+2b+c$ …… (1) $3=16a+4b+c$ …… (2) $-5=144a+12b+c$ …… (3) Subtract equation (2) from (1), $\begin{align} & \underline{\begin{align} & 0=4a+2b+c \\ & -3=-16a-4b-c \end{align}} \\ & -3=-12a-2b \\ \end{align}$ Further, $-3=-12a-2b$ …...(4) Subtract equation (2) from (3), $\begin{align} & \underline{\begin{align} & -5=144a+12b+c \\ & -3=-16a-4b-c \end{align}} \\ & -8=128a+8b \\ \end{align}$ Simplify further, $-2=32a+2b$ …..(5) Add equation (4) and (5), $\begin{align} & \underline{\begin{align} & -2=32a+2b \\ & -3=-12a-2b \end{align}} \\ & -5=20a \\ \end{align}$ Further, $\begin{align} & a=-\frac{20}{5} \\ & =-\frac{1}{4} \end{align}$ Therefore, $a=-\frac{1}{4}$ Substitute $a=-\frac{1}{4}$ into the equation $-3=-12a-2b$, $\begin{align} & -3=-12\left( -\frac{1}{4} \right)-2b \\ & 3=3-2b \\ & -6=-2b \\ & b=3 \end{align}$ Therefore, $b=3$ Substitute $a=-\frac{1}{4}$ and $b=3$ into the equation $0=4a+2b+c$, $\begin{align} & 0=4\left( -\frac{1}{4} \right)+2\left( 3 \right)+c \\ & 0=1+6+c \\ & c=-5 \end{align}$ Therefore, $c=-5$ Substitute the values $a=-\frac{1}{4},b=3$ and $c=-5$ in the standard quadratic equation $f\left( x \right)=a{{x}^{2}}+bx+c$ $f\left( x \right)=-\frac{1}{4}{{x}^{2}}+3x-5$. Hence, the quadratic function that fits the set of data points $\left( 2,0 \right),\left( 4,3 \right),\left( 12,-5 \right)$ is $f\left( x \right)=-\frac{1}{4}{{x}^{2}}+3x-5$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.