Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 11 - Quadratic Functions and Equations - 11.8 Problem Solving and Quadratic Functions - 11.8 Exercise Set - Page 756: 40

Answer

(a) $p\left( s \right)=\left( 0.05 \right){{s}^{2}}-\left( 5.5 \right)s+250$ (b) 100

Work Step by Step

(a) The function in standard form is written as $p\left( s \right)=a{{s}^{2}}+bs+c$, where s denotes the travel speed. So, the equations will be: Put $s=60$ in the equation $p\left( s \right)=a{{s}^{2}}+bs+c$ $a{{\left( 60 \right)}^{2}}+60b+c=100$ …… (1) Put $s=80$ in the equation $p\left( s \right)=a{{s}^{2}}+bs+c$ $a{{\left( 80 \right)}^{2}}+b\left( 80 \right)+c=130$ …… (2) Put $s=100$ in the equation $p\left( s \right)=a{{s}^{2}}+bs+c$ $a{{\left( 100 \right)}^{2}}+b\left( 100 \right)+c=200$ …… (3) Now, subtract equation 2 from equation 1: $\begin{align} & a{{\left( 80 \right)}^{2}}+b\left( 80 \right)+c-130-\left( a{{\left( 60 \right)}^{2}}+b\left( 60 \right)+c-100 \right)=0 \\ & a{{\left( 80 \right)}^{2}}+b\left( 80 \right)+c-130-a{{\left( 60 \right)}^{2}}-b\left( 60 \right)-c+100=0 \\ & \left( 6400-3600 \right)a+\left( 80-60 \right)b=30 \\ & 2800a+20b=30 \end{align}$ Now, $2800a+20b=30$ …… (4) Now, subtract equation 2 from equation 3: $\begin{align} & a{{\left( 100 \right)}^{2}}+b\left( 100 \right)+c-200-\left( a{{\left( 80 \right)}^{2}}+b\left( 80 \right)+c-130 \right)=0 \\ & a{{\left( 100 \right)}^{2}}+b\left( 100 \right)+c-200-a{{\left( 80 \right)}^{2}}-b\left( 80 \right)-c+130=0 \\ & \left( 10000-6400 \right)a+\left( 100-80 \right)b=70 \\ & 3600a+20b=70 \end{align}$ Now, $3600a+20b=70$ …… (5) Now subtract equation 4 from equation 5: $\begin{align} & 3600a+20b-70-\left( 2800a+20b-30 \right)=0 \\ & 3600a+20b-70-2800a-20b+30=0 \\ & 3600a+20b-2800a-20b=70-30 \\ & 800a=40 \end{align}$ On further simplification: $800a=40$ Divide by 800 on both sides: $\begin{align} & a=\frac{40}{800} \\ & =\frac{5}{100} \\ & =0.05 \end{align}$ Now, substituting the value of a in any of the above equations: $\begin{align} & 2800\left( 0.05 \right)+20b=30 \\ & 140+20b=30 \end{align}$ Subtract 140 from both sides: $\begin{align} & 140+20b-140=30-140 \\ & 20b=-110 \end{align}$ Divide by 20 on both sides: $\begin{align} & b=-\frac{110}{20} \\ & =-5.5 \end{align}$ Now, substitute the values of a and b in equation 1, to get the value of c: $\begin{align} & \left( 0.05 \right){{\left( 60 \right)}^{2}}-\left( 5.5 \right)\left( 60 \right)+c=100 \\ & \left( 5 \right)\cdot 36-\left( 55 \right)\cdot 6+c=100 \\ & 180-330+c=100 \\ & c=250 \end{align}$ Thus, the quadratic equation of the given data will be written as: $p\left( s \right)=\left( 0.05 \right){{s}^{2}}-\left( 5.5 \right)s+250$. (b) $p\left( s \right)=\left( 0.05 \right){{s}^{2}}-\left( 5.5 \right)s+250$ Now, take $s=50$and substitute in the quadratic equation, So, $\begin{align} & p\left( s \right)=\left( 0.05 \right){{s}^{2}}-\left( 5.5 \right)s+250 \\ & =\left( 0.05 \right){{\left( 50 \right)}^{2}}-\left( 5.5 \right)\left( 50 \right)+250 \\ & =\left( 0.05 \right)\cdot 2500-\left( 5.5 \right)\cdot 50+250 \\ & =125-275+250 \end{align}$ On further simplification $\begin{align} & p\left( s \right)=375-275 \\ & =100 \end{align}$ Thus, the number of accidents that are estimated that would occur at $50\ \text{km/hr}$is 100.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.