Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 11 - Quadratic Functions and Equations - 11.8 Problem Solving and Quadratic Functions - 11.8 Exercise Set - Page 756: 39

Answer

(a) $p\left( s \right)=\left( \frac{3}{16} \right){{s}^{2}}-\frac{135}{4}s+1750$. (b) 531

Work Step by Step

(a) The function in standard form is written as $p\left( s \right)=a{{s}^{2}}+bs+c$, where s denotes the travel speed. So, the equations will be: Put $s=60$ in the equation $p\left( s \right)=a{{s}^{2}}+bs+c$. $a{{\left( 60 \right)}^{2}}+b\left( 60 \right)+c=400$ …… (1) Put $s=80$ in the equation $p\left( s \right)=a{{s}^{2}}+bs+c$. $a{{\left( 80 \right)}^{2}}+b\left( 80 \right)+c=250$ …… (2) Put $s=100$in the equation $p\left( s \right)=a{{s}^{2}}+bs+c$. $a{{\left( 100 \right)}^{2}}+b\left( 100 \right)+c=250$ …… (3) Now, subtract equation (2) from equation (1): $\begin{align} & a{{\left( 60 \right)}^{2}}+b\left( 60 \right)+c-400-\left( a{{\left( 80 \right)}^{2}}+b\left( 80 \right)+c-250 \right)=0 \\ & a{{\left( 60 \right)}^{2}}+b\left( 60 \right)+c-400-a{{\left( 80 \right)}^{2}}-b\left( 80 \right)-c+250=0 \\ & a\left( 3600-6400 \right)-b\left( 60-80 \right)-150=0 \\ & -2800a-20b-150=0 \end{align}$ Now, $-2800a-20b-150=0$ …… (4) Now, subtract equation (2) from equation (3): $\begin{align} & a{{\left( 100 \right)}^{2}}+b\left( 100 \right)+c-250-\left( a{{\left( 80 \right)}^{2}}+b\left( 80 \right)+c-250 \right)=0 \\ & a{{\left( 100 \right)}^{2}}+b\left( 100 \right)+c-250-a{{\left( 80 \right)}^{2}}-b\left( 80 \right)-c+250=0 \\ & a\left( 10000-6400 \right)+b\left( 100-80 \right)=0 \\ & 3600a+20b=0 \end{align}$ Now, $3600a+20b=0$ …… (5) Now add equation (4) and equation (5): $\begin{align} & 3600a+20b+\left( -2800a-20b-150 \right)=0 \\ & 3600a+20b-2800a-20b-150=0 \\ & 800a-150=0 \end{align}$ Upon further simplification: $\begin{align} & 800a=150 \\ & a=\frac{150}{800} \\ & =\frac{3}{16} \end{align}$ Now, substituting the value of a in any of the above equations: $\begin{align} & -2800\left( \frac{3}{16} \right)-20b=150 \\ & -525-20b=150 \\ & -20b=675 \end{align}$ Divide by $-20$ on both sides $\begin{align} & b=\frac{675}{-20} \\ & =-\frac{135}{4} \end{align}$ Now, substitute the values of a and b in equation 1, to get the value of c: $\begin{align} & a{{\left( 60 \right)}^{2}}+b\left( 60 \right)+c=400 \\ & \left( \frac{3}{16} \right){{\left( 60 \right)}^{2}}-\left( \frac{135}{4} \right)\left( 60 \right)+c=400 \\ & \left( \frac{3}{16} \right)\cdot 3600-\left( \frac{135}{4} \right)\left( 60 \right)+c=400 \\ & 675-2025+c=400 \end{align}$ Upon further simplification $c=1750$ Thus, the quadratic equation of the given data will be written as: $p\left( s \right)=\left( \frac{3}{16} \right){{s}^{2}}-\frac{135}{4}s+1750$ (b) $p\left( s \right)=\left( \frac{3}{16} \right){{t}^{2}}-\frac{135}{4}t+1750$ Now, take $s=50$ and substitute in the quadratic equation: So, $\begin{align} & p\left( 50 \right)=\frac{3}{16}\cdot {{\left( 50 \right)}^{2}}-\frac{135}{4}\cdot \left( 50 \right)+1750 \\ & =\frac{3}{16}\cdot \left( 2500 \right)-\frac{135}{4}\cdot \left( 50 \right)+1750 \\ & =468.75-1687.5+1750 \\ & =531.25 \end{align}$ Therefore, the number of accidents that are estimated that would occur at $50\ \text{km/hr}$ are 531 accidents.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.