Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 11 - Quadratic Functions and Equations - 11.8 Problem Solving and Quadratic Functions - 11.8 Exercise Set - Page 756: 36

Answer

$f\left( x \right)=3{{x}^{2}}-x+2$

Work Step by Step

$f\left( x \right)=a{{x}^{2}}+bx+c$ Substitute the data point$\left( 1,4 \right)$ into the standard quadratic equation $f\left( x \right)=a{{x}^{2}}+bx+c$, $4=a{{\left( 1 \right)}^{2}}+b\left( 1 \right)+c$ Substitute the data point$\left( -1,6 \right)$ into the standard quadratic equation$f\left( x \right)=a{{x}^{2}}+bx+c$, $6=a{{\left( -1 \right)}^{2}}+b\left( -1 \right)+c$ Substitute the data point$\left( -2,16 \right)$ into the standard quadratic equation$f\left( x \right)=a{{x}^{2}}+bx+c$, $16=a{{\left( -2 \right)}^{2}}+b\left( -2 \right)+c$ Simplify the equations further as shown below, $4=a+b+c$ …… (1) $6=a-b+c$ …… (2) $16=4a-2b+c$ …… (3) Addition of equation (1) and (2), $\begin{align} & \underline{\begin{align} & 4=a+b+c \\ & 6=a-b+c \end{align}} \\ & \text{10}=2a+2c \\ \end{align}$ Further, $5=a+c$ …..(4) Multiply $\left( -2 \right)$ into the equation (2) and then add with equation (3), $\begin{align} & \underline{\begin{align} & -12=-2a+2b-2c \\ & 16=4a-2b+c \end{align}} \\ & \text{ 4}=2a-c \\ \end{align}$ Further, $4=2a-c$ …..(5) Add equation (4) and (5), $\begin{align} & \underline{\begin{align} & 4=2a-c \\ & 5=a+c \end{align}} \\ & \text{9}=3a \\ \end{align}$ Further, $\begin{align} & a=\frac{9}{3} \\ & =3 \end{align}$ Therefore, $a=3$ Substitute $a=3$ into the equation $5=a+c$, $\begin{align} & 5=3+c \\ & c=5-2 \\ & =2 \end{align}$ Therefore, $c=2$ Substitute $a=3$ and $c=2$ into the equation $4=a+b+c$, $\begin{align} & 4=3+b+2 \\ & 4=5+b \\ & b=-1 \end{align}$ Therefore, $b=-1$ Put the values$a=3,b=-1$ and $c=2$ in the standard quadratic equation $f\left( x \right)=a{{x}^{2}}+bx+c$, $f\left( x \right)=3{{x}^{2}}-x+2$. Hence, the quadratic function that fits the set of data points $\left( 1,4 \right),\left( -1,6 \right),\left( -2,16 \right)$ is $f\left( x \right)=3{{x}^{2}}-x+2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.