Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 11 - Quadratic Functions and Equations - 11.8 Problem Solving and Quadratic Functions - 11.8 Exercise Set - Page 756: 41

Answer

$h\left( d \right)=\left( -0.0068 \right){{d}^{2}}+\left( 0.8571 \right)d$

Work Step by Step

Let the arrow be launched from the point $\left( 0,0 \right)$. Then, the point at the bottom of the tower will be $\left( 63,0 \right)$ and at the top of the tower will be $\left( 63,27 \right)$. In this case, if the arrow is launched at the point $(63,0)$, then the arrow will land at $\left( 126,0 \right)$. Now, the points that emerged are $\left( 0,0 \right)$,$\left( 63,27 \right)$and $\left( 126,0 \right)$. The standard form of the equation is: $h\left( d \right)=a{{d}^{2}}+bd+c$, where $h$ is the height of the arrow and $d$ be the horizontal distance traveled. So, use the three coordinates $\left( 0,0 \right)$,$\left( 63,27 \right)$ and $\left( 126,0 \right)$. When $x=0,y=0$ $\begin{align} & a{{\left( 0 \right)}^{2}}+b\left( 0 \right)+c=0 \\ & c=0 \end{align}$ The equation simplifies to: $\begin{align} & h\left( d \right)=a{{d}^{2}}+bd+0 \\ & h\left( d \right)=a{{d}^{2}}+bd \\ \end{align}$ When $x=63\text{ and }y=27$, $\begin{align} & a{{\left( 63 \right)}^{2}}+b\left( 63 \right)=27 \\ & 441a+7b=3 \end{align}$ $441a+7b=3$ …… (1) When $x=126\text{ and }y=0$, then, $\begin{align} & a{{\left( 126 \right)}^{2}}+b\left( 126 \right)=0 \\ & 126\left( 126a+b \right)=0 \\ & 126a+b=0 \end{align}$ $126a+b=0$ …… (2) Substitute the value of $b=-126a$ from equation (2) into equation (1), $\begin{align} & 441a+7\left( -126a \right)=3 \\ & 441a-882a=3 \\ & a\left( 441-882 \right)=3 \\ & -441a=3 \end{align}$ Divide by $-441$ on both sides, $\begin{align} & \frac{-441d}{-441}=\frac{3}{-441} \\ & d=\frac{-3}{441} \\ & =-0.0068 \end{align}$ Now, substitute the value of $a$ in equation (2): $\begin{align} & b=-126\left( -0.0068 \right) \\ & =0.8571 \end{align}$ Thus, the quadratic function is $h\left( d \right)=\left( -0.0068 \right){{d}^{2}}+\left( 0.8571 \right)d$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.