Answer
See below
Work Step by Step
Suppose $A=\begin{bmatrix}
\alpha x-\beta y &\beta x-\alpha y\\
\beta x+\alpha y & \alpha x+\beta y
\end{bmatrix}\\
B=\begin{bmatrix}
\alpha x &\beta x-\alpha y\\
\beta x & \alpha x+\beta y
\end{bmatrix}\\
C=\begin{bmatrix}
-\beta y &\beta x-\alpha y\\
\alpha y & \alpha x+\beta y
\end{bmatrix}$
According to property P6, we have
$\det (A)=\det(B)+\det (C)\\
\begin{bmatrix}
\alpha x-\beta y &\beta x-\alpha y\\
\beta x+\alpha y & \alpha x+\beta y
\end{bmatrix}=\begin{bmatrix}
\alpha x &\beta x-\alpha y\\
\beta x & \alpha x+\beta y
\end{bmatrix}+\begin{bmatrix}
-\beta y &\beta x-\alpha y\\
\alpha y & \alpha x+\beta y
\end{bmatrix}$
Using property P2:
$=\begin{bmatrix}
\alpha x &\beta x\\
\alpha x & \beta x
\end{bmatrix}+\begin{bmatrix}
\alpha x& -\alpha y\\
\beta x & \beta y
\end{bmatrix}+\begin{bmatrix}
-\beta y &\beta x\\
\alpha y & \alpha x
\end{bmatrix}+\begin{bmatrix}
-\beta y &-\alpha y\\
\alpha y & \beta y
\end{bmatrix}\\
=x\begin{bmatrix}
\alpha &\beta \\
\alpha & \beta
\end{bmatrix}+x\begin{bmatrix}
\alpha & -\alpha y\\
\beta & \beta y
\end{bmatrix}+y\begin{bmatrix}
-\beta &\beta x\\
\alpha & \alpha x
\end{bmatrix}+y\begin{bmatrix}
-\beta &-\alpha \\
\alpha & \beta
\end{bmatrix}\\
=x^2\begin{bmatrix}
\alpha &\beta \\
\beta & \alpha
\end{bmatrix}+xy\begin{bmatrix}
\alpha & -\alpha \\
\beta & \beta
\end{bmatrix}+yx\begin{bmatrix}
-\beta &\beta \\
\alpha & \alpha
\end{bmatrix}+y^2\begin{bmatrix}
-\beta &-\alpha \\
\alpha & \beta
\end{bmatrix}\\
=x^2\begin{bmatrix}
\alpha &\beta \\
\beta & \alpha
\end{bmatrix}+xy\begin{bmatrix}
\alpha & -\alpha \\
\beta & \beta
\end{bmatrix}+yx\begin{bmatrix}
-\beta &\beta \\
\alpha & \alpha
\end{bmatrix}y^2\begin{bmatrix}
\beta &\alpha \\
\alpha & \beta
\end{bmatrix}\\
=x^2\begin{bmatrix}
\alpha &\beta \\
\beta & \alpha
\end{bmatrix}+xy\begin{bmatrix}
\alpha & -\alpha \\
\beta & \beta
\end{bmatrix}-yx\begin{bmatrix}
\beta &-\beta \\
\alpha & \alpha
\end{bmatrix}-y^2\begin{bmatrix}
\beta &\alpha \\
\alpha & \beta
\end{bmatrix}$
Using property P1:
$=x^2\begin{bmatrix}
\alpha &\beta \\
\beta & \alpha
\end{bmatrix}+xy\begin{bmatrix}
\alpha & -\alpha \\
\beta & \beta
\end{bmatrix}+xy\begin{bmatrix}
\alpha & \alpha \\\beta &-\beta \\
\end{bmatrix}+y^2\begin{bmatrix}
\alpha & \beta \\\beta &\alpha \\
\end{bmatrix}\\
=x^2\begin{bmatrix}
\alpha &\beta \\
\beta & \alpha
\end{bmatrix}+xy\begin{bmatrix}
\alpha & -\alpha \\
\beta & \beta
\end{bmatrix}-xy\begin{bmatrix}
\alpha & -\alpha \\\beta &-\beta \\
\end{bmatrix}+y^2\begin{bmatrix}
\alpha & \beta \\\beta &\alpha \\
\end{bmatrix}\\
=(x^2+y^2)\begin{bmatrix}
\alpha & \beta \\\beta &\alpha \\
\end{bmatrix}$