Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.2 Properties of Determinants - Problems - Page 220: 42

Answer

$\det ((B)^{-1}(A)^{-1})=\frac{1}{15}$

Work Step by Step

Since $A$ and $B$ are $4 \times 4$ matrix, applying the property $P9$, we obtain: $\det ((B)^{-1}(A)^{-1})=\det (B)^{-1}.\det (A)^{-1}$ Solve both determinants by applying property $P10$: $\det (B)^{-1}=\frac{1}{\det (B)}=\frac{1}{3}$ $\det (A)^{-1}=\frac{1}{\det (A)}=\frac{1}{5}$ Hence, $\det ((B)^{-1}(A)^{-1})=\frac{1}{3}.\frac{1}{5}=\frac{1}{15}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.