Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.2 Properties of Determinants - Problems - Page 220: 32

Answer

See below

Work Step by Step

Let $\begin{array}{c}{\det (A)=\left[\begin{array}{ccc} a & b \\c &d \end{array}\right] }\end{array}$ and $\det(A)=1$ We will assume the elementary matrix $E=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ If we let $A_1=AE=\begin{bmatrix} a&b \\c&d \end{bmatrix}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}=\begin{bmatrix} b & a \\ c & d \end{bmatrix}$ then we have $\det(A_1)=\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}=0.0-1.1=-1$ According to propert P9, $\det(A_1)=\det(EA)=\det (E).\det(A)=1.(-1)=-1$ Find matrix $B$: $\begin{bmatrix} b & a \\ c & d \end{bmatrix}\approx \begin{bmatrix} -b & -a \\ d & c \end{bmatrix} \approx \begin{bmatrix} -b & -a \\ d-4b & c-4a \end{bmatrix}$ Consequently, $\det(B)=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.