Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.2 Properties of Determinants - Problems - Page 220: 47

Answer

$\det (A)=0$ for $x \in \{0,2,-1\}$

Work Step by Step

$\det (A)=\begin{bmatrix} 1 & -1 & x \\ 2& 1 & x^2\\ 4 & -1 & x^3 \end{bmatrix} \approx^1\begin{bmatrix} 1 & -1 & x \\ 0& 3 & x^2-2x\\ 0 &3 & x^3-4x \end{bmatrix} \approx^2 \begin{bmatrix} 1 & -1 & x \\ 0& 3 & x^2-2x\\ 0 &3 & x^3-x^2-2x \end{bmatrix} $ Also $\begin{bmatrix} 1 & -1 & x \\ 0& 3 & x^2-2x\\ 0 &3 & x^3-x^2-2x \end{bmatrix}=\begin{bmatrix} 1 & -1 & x \\ 0& 3 & x(x-2)\\ 0 &3 & x(x-2)(x+1) \end{bmatrix}$ $1. A_{12}(-2),A_{13}(-4)$ $2.A_{23}(-1)$ Hence, the determinant of the given matrix is $\det (A)=0$ for $x \in \{0,2,-1\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.