Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.2 Properties of Determinants - Problems - Page 220: 36

Answer

$\det (B)=-12$

Work Step by Step

Let $A=\begin{bmatrix} a & b & c\\ d & e &f\\ g & h & i \end{bmatrix}$ and $\det (A)=-6$ $A^T=\begin{bmatrix} a & d & g\\ b & e &h\\ c& f & i \end{bmatrix}$ $\det (A_1)=\det (A^T)=-6$ Adding $-1$ times third row of $A^T$ to the second row, we obtain $A_2=\begin{bmatrix} a & d & g\\ b-c & e-f &h-i\\ c& f & i \end{bmatrix}$ $\det (A_2)=\det (A^T)=-6$ Multiplying first row of $A_2$ by $-1$ to the third row, we obtain: $A_3=\begin{bmatrix} a & d & g\\ b-c & e-f &h-i\\ c-a& f-d & i-g \end{bmatrix}$ $\det (A_3)=\det (A_2)=-6$ Multiplying first row of $A_3$ by $2$: $B=\begin{bmatrix} 2a & 2d & 2g\\ b-c & e-f &h-i\\ c-a& f-d & i-g \end{bmatrix}$ $\det (B)=2\det (A_3)=-12$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.