Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.2 Properties of Determinants - Problems - Page 220: 45

Answer

See below

Work Step by Step

Let $\begin{array}{c}{A=\left[\begin{array}{ccc} 1 & 0 \\4 & 1 \end{array}\right] }\end{array},\begin{array}{c}{S=\left[\begin{array}{ccc} 1 & 2 \\0 & 1 \end{array}\right] }\end{array}$ and $B$ be $n × n$ matrices Obtain $S^{-1}AS=\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1& 0 \\ 4 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 \\ 0& 1 \end{bmatrix}$ then we have $\det(A_1)=\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}=\begin{array}{c}{A=\left[\begin{array}{ccc} -7 & =16 \\4 & 9 \end{array}\right] }\end{array}$ Let $\left[\begin{array}{ccc} -7 & =16 \\4 & 9 \end{array}\right] =B$ Hence, $\det(A)=1-0=1\\ \det(B)=1$ According to propert P9, $\det(S^{-1}AS)\\=\det(B)\\=\det (S^{-1}).\det(A).\det(S)\\=\det (S^{-1}).\det(S).\det(A)\\=\det(I_n).\det(A)\\=\det(A)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.