Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.2 Properties of Determinants - Problems - Page 220: 39

Answer

$\det (A^{-1}B^2)^3=\frac{729}{125}$

Work Step by Step

Applying Theorem 3.2.5, we have: $\det (A^{-1}B^2)^3=\det (A^{-1}B^2.A^{-1}B^2.A^{-1}B^2)=\det (A^{-1}B^2).\det (A^{-1}B^2).\det (A^{-1}B^2)=\det (A^{-1}).\det (B^2).\det (A^{-1}).\det (B^2).\det (A^{-1}).\det (B^2)$ Determinant of $B^T$ can be evaluate by the property P5: $\det (B^2)=\det (BB)=\det (B).\det (B)=3.3=9$ Applying the property P10, since $\det (A)\ne0$ we get: $\det (A^{-1})=\frac{1}{\det (A)}=\frac{1}{5}$ Hence, $\det (A^{-1}B^2)^3=\frac{1}{5}.9\frac{1}{5}.9.\frac{1}{5}.9=\frac{729}{125}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.