Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.2 Properties of Determinants - Problems - Page 220: 34

Answer

$\det (B)=24$

Work Step by Step

Let $A=\begin{bmatrix} a & b & c\\ d & e &f\\ g & h & i \end{bmatrix}$ and $\det (A)=6$ Permuting the first and second rows of $A$, and then the second and third rows of $A$, we obtain $A=\begin{bmatrix} d & e &f\\ g & h & i\\ a & b & c \end{bmatrix}$ $\det (A_1)=-6$ Multiplying the first row of $A_1$ by $-4$, we obtain: $A_2=\begin{bmatrix} -4d & -4e &-4f\\ g & h & i\\ a & b & c \end{bmatrix}$ $\det (A_2)=(-4)\det (A_1)=-4.(-6)=24$ Adding 5 times third row of $A_2$ to the second row, we obtain: $B=\begin{bmatrix} -4d & -4e &-4f\\ g+5a & h+5b & i+5c\\ a & b & c \end{bmatrix}$ $\det (B)=\det (A_2)=24$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.