Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.2 Properties of Determinants - Problems - Page 220: 33

Answer

$\det (B)=12$

Work Step by Step

Let $A=\begin{bmatrix} a & b & c\\ d & e &f\\ g & h & i \end{bmatrix}$ and $\det (A)=-6$ Multiplying the second row of A by $-2$, we obtain: $A_1=\begin{bmatrix} a & b & c\\ -2d & -2e &-2f\\ g & h & i \end{bmatrix}$ $\det (A_1)=(-2)\det (A)=-2*(-6)=12$ Multiplying the first row of $A_1$ by $-1$, we obtain: $A_2=\begin{bmatrix} -a & -b & -c\\ -2d & -2e &-2f\\ g & h & i \end{bmatrix}$ $\det (A_2)=(-1)\det (A_1)=(-1)(12)=-12$ Interchanging the first and third rows of $A_2$ by $-1$, we obtain: $B=\begin{bmatrix} g & h & i\\ -2d & -2e &-2f\\ -a & -b & -c \end{bmatrix}$ $\det (B)=(-1)\det (A_2)=(-1)(-12)=12$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.