Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.2 Properties of Determinants - Problems - Page 220: 35

Answer

$\det (B)=-18$

Work Step by Step

Let $A=\begin{bmatrix} a & b & c\\ d & e &f\\ g & h & i \end{bmatrix}$ and $\det (A)=-6$ Permuting the first and second rows of $A$: $A_1=\begin{bmatrix} d & e &f\\ a & b & c\\ g & h & i \end{bmatrix}$ $\det (A_1)=-\det (A_1)=6$ Multiplying the second row of $A_1$ by $-3$, we obtain: $A_2=\begin{bmatrix} d & e &f\\ -3a & -3b & -3c\\ g & h & i \end{bmatrix}$ $\det (A_2)=(-3)\det (A_1)=-3.(6)=-18$ Adding 4 times first row of $A_2$ to the third row, we obtain: $B=\begin{bmatrix} d & e &f\\ -3a & -3b & -3c\\ g-4d & h-4e & f-4f \end{bmatrix}$ $\det (B)=\det (A_2)=-18$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.