Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.2 Properties of Determinants - Problems - Page 220: 28

Answer

See below

Work Step by Step

By using property P9 we obtain: $$\begin{array}{c}{\det (A)=\left[\begin{array}{ccc} \cosh x & \sin x\\ \sinh x & \cosh x \end{array}\right] }\end{array} =\cosh^ 2x-\sinh^2 x=1\\ \begin{array}{c}{\det (A)=\left[\begin{array}{ccc} \cosh y & \sinh y\\ \sinh y & \cosh y \end{array}\right] }\end{array} =\cosh^ 2y-\sinh^2 y=1$$ then $\begin{array}{c}{\det (A)=\left[\begin{array}{ccc} \cosh x\cosh y+ \sinh x\sinh y &\cosh x \sinh y+\sinh x\cosh y\\ \sinh x\cosh y+\cosh x\sinh y & \sinh x\sinh y+\cosh x \cosh y\end{array}\right] }\end{array} =[(\cosh x\cosh y+ \sinh x\sinh y).( \sinh x\sinh y+\cosh x\cosh y)]-[(\cosh x \sinh y+\sinh x\cosh y)(\sinh x\cosh y+\cosh x\sinh y)]\\=(\cosh (x+y).\cosh (x+y))-(\sinh (x+y).\sinh(x+y))\\ =\cosh^2(x+y)-\sinh^2 (x+y)\\=1$ Consequently, $\det(AB)=\det(A).\det(B).$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.