Answer
See below
Work Step by Step
According to property P6 we have
$\begin{bmatrix}
a_1+\beta b_1 &b_1+\gamma c_1 &c_1+\alpha a_1\\
a_2+\beta b_2 &b_2+\gamma c_2 &c_2+\alpha a_2\\
a_3+\beta b_3 &b_3+\gamma c_3 &c_3+\alpha a_3
\end{bmatrix}\\
=\begin{bmatrix}
a_1 &b_1+\gamma c_1 &c_1+\alpha a_1\\
a_2&b_2+\gamma c_2 &c_2+\alpha a_2\\
a_3&b_3+\gamma c_3 &c_3+\alpha a_3
\end{bmatrix}+\begin{bmatrix}
\beta b_1 &b_1+\gamma c_1 &c_1+\alpha a_1\\
\beta b_2 &b_2+\gamma c_2 &c_2+\alpha a_2\\
\beta b_3 &b_3+\gamma c_3 &c_3+\alpha a_3
\end{bmatrix}\\
=\begin{bmatrix}
a_1 &b_1 &c_1+\alpha a_1\\
a_2&b_2&c_2+\alpha a_2\\
a_3&b_3 &c_3+\alpha a_3
\end{bmatrix}+\begin{bmatrix}
\beta b_1 &\gamma c_1 &c_1+\alpha a_1\\
\beta b_2 &\gamma c_2 &c_2+\alpha a_2\\
\beta b_3 &\gamma c_3 &c_3+\alpha a_3
\end{bmatrix}+\begin{bmatrix}
a_1 &\gamma c_1 &c_1+\alpha a_1\\
a_2&\gamma c_2 &c_2+\alpha a_2\\
a_3&\gamma c_3 &c_3+\alpha a_3
\end{bmatrix}+\begin{bmatrix}
\beta b_1 &\gamma c_1 &c_1+\alpha a_1\\
\beta b_2 &\gamma c_2 &c_2+\alpha a_2\\
\beta b_3 &\gamma c_3 &c_3+\alpha a_3
\end{bmatrix}\\
=\begin{bmatrix}
a_1 &b_1 &c_1\\
a_2&b_2&c_2\\
a_3&b_3 &c_3
\end{bmatrix}+\begin{bmatrix}
a_1 &\gamma c_1 &c_1\\
a_2 &\gamma c_2 &c_2\\
a_3 &\gamma c_3 &c_3
\end{bmatrix}+\begin{bmatrix}
a_1 &b_1 & \alpha a_1\\
a_2& b_2 & \alpha a_2\\
a_3 & b_3 &\alpha a_3
\end{bmatrix}+\begin{bmatrix}
a_1 &\gamma c_1 &\alpha a_1\\
a_2 &\gamma c_2 & \alpha a_2\\
a_3 &\gamma c_3 & \alpha a_3
\end{bmatrix}+\begin{bmatrix}
\beta b_1 &b_1 &c_1\\
\beta b_2&b_2&c_2\\
\beta b_3&b_3 &c_3
\end{bmatrix}+\begin{bmatrix}
\beta b_1 &\gamma c_1 &c_1\\
\beta b_2 &\gamma c_2 &c_2\\
\beta b_3 &\gamma c_3 &c_3
\end{bmatrix}+\begin{bmatrix}
\beta b_1 &b_1 & \alpha a_1\\
\beta b_2& b_2 & \alpha a_2\\
\beta b_3 & b_3 &\alpha a_3
\end{bmatrix}+\begin{bmatrix}
\beta b_1 &\gamma c_1 &\alpha a_1\\
\beta b_2 &\gamma c_2 & \alpha a_2\\
\beta b_3 &\gamma c_3 & \alpha a_3
\end{bmatrix}$
Using property 4
$=\begin{bmatrix}
a_1 &b_1 &c_1\\
a_2&b_2&c_2\\
a_3&b_3 &c_3
\end{bmatrix}+\gamma \begin{bmatrix}
a_1 & c_1 &c_1\\
a_2 & c_2 &c_2\\
a_3 & c_3 &c_3
\end{bmatrix}+\alpha \begin{bmatrix}
a_1 &b_1 & a_1\\
a_2& b_2 & a_2\\
a_3 & b_3 &a_3
\end{bmatrix}+\gamma \alpha\begin{bmatrix}
a_1 & c_1 &a_1\\
a_2 &c_2 & a_2\\
a_3 &c_3 & a_3
\end{bmatrix}+\beta \begin{bmatrix}
b_1 &b_1 &c_1\\
b_2&b_2&c_2\\
b_3&b_3 &c_3
\end{bmatrix}+\beta \gamma \begin{bmatrix}
b_1 & c_1 &c_1\\
b_2 & c_2 &c_2\\
b_3 & c_3 &c_3
\end{bmatrix}+\beta \alpha \begin{bmatrix}
b_1 &b_1 & a_1\\
b_2& b_2 & a_2\\
b_3 & b_3 & a_3
\end{bmatrix}+\beta \gamma \alpha \begin{bmatrix}
b_1 & c_1 & a_1\\
b_2 & c_2 & a_2\\
b_3 & c_3 & a_3
\end{bmatrix}$
Hence, the determinant is:
$\begin{bmatrix}
a_1+\beta b_1 &b_1+\gamma c_1 &c_1+\alpha a_1\\
a_2+\beta b_2 &b_2+\gamma c_2 &c_2+\alpha a_2\\
a_3+\beta b_3 &b_3+\gamma c_3 &c_3+\alpha a_3
\end{bmatrix}\\= \begin{vmatrix}
a_1 &b_1 & a_1\\
a_2& b_2 & a_2\\
a_3 & b_3 &a_3
\end{vmatrix}+\alpha \beta \gamma \begin{vmatrix}
b_1 & c_1 & a_1\\
b_2 & c_2 & a_2\\
b_3 & c_3 & a_3
\end{vmatrix}\\
=(1+\alpha \beta \gamma)\begin{vmatrix}
b_1 & c_1 & a_1\\
b_2 & c_2 & a_2\\
b_3 & c_3 & a_3
\end{vmatrix}$
The given determinant is zero for all $a_i,b_i,c_i$ if and only if:
$1+\alpha \beta \gamma =0\\
\alpha \beta \gamma =-1$