Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.2 Properties of Determinants - Problems - Page 221: 58

Answer

See below

Work Step by Step

We have $\det(A)=\begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix}\\ =\begin{vmatrix} 1 & x & x^2 \\ 0 & y-x & y^2-x^2 \\ 1 & z-x & z^2-x^2 \end{vmatrix}$ Using P2: $\det(A)=(y-x)(z-x)\begin{vmatrix} 1 & x & x^2 \\ 0 & 1& y+x \\ 0& 1 & z+x \end{vmatrix}\\ =(y-x)(z-x)\begin{vmatrix} 1 & x & x^2 \\ 0 & 1& y+x \\ 0& 0 & z-y \end{vmatrix}$ Hence, according to Theorem 3.2.1, we have $\det(A)=(y-x)(z-x)(z-y)\\=(y-z)(z-x)(x-y)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.