Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.2 Properties of Determinants - Problems - Page 221: 60

Answer

See below

Work Step by Step

Let $A = [a_1, a_2,..., a_n]$ be an $n \times n$ matrix, and let $b = c_1a_1 + c_2a_2 +···+ c_na_n$, where $c_1, c_2,..., c_n$ are constants. Obtain: $B_k=[a_1, a_2,..., a_{k-1},c_1a_1+c_2a_2+...c_na_n,a_{k+1},...,a_n]\\ \rightarrow \det(B_k)=([a_1, a_2,..., a_{k-1},c_1a_1+c_2a_2+...c_na_n,a_{k+1},...,a_n])$ Using property P6: $\det(B_k)=\det[a_1, a_2,..., a_{k-1},c_1a_1,a_{k+1},...,a_n]+\det[a_1, a_2,..., a_{k-1},c_2a_2,a_{k+1},...,a_n]+...\det [a_1, a_2,..., a_{k-1},c_na_n,a_{k+1},...,a_n]$ Using property P2: $\det(B_k)=c_1 \det[a_1, a_2,..., a_{k-1},a_1,a_{k+1},...,a_n]+c_2\det[a_1, a_2,..., a_2,a_{k+1},...,a_n]+...c_n\det [a_1, a_2,..., a_{k-1},a_n,a_{k+1},...,a_n]$ All of the above determinants are all zeroes, according to property P7. Hence, $\det(B_k)\\=c_k\det [a_1, a_2,..., a_{k-1},a_k,a_{k+1},...,a_n]\\ =c_k\det(A)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.