Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.2 Properties of Determinants - Problems - Page 221: 54

Answer

See below

Work Step by Step

According to property P9: $\det(S^{-1}AS)^2\\=\det(S^{-1}AS)(S^{-1}AS)\\=\det(S^{-1}AS)\det(S^{-1}AS)\\=\det(S^{-1})\det(A)\det(S)\det(S^{-1})\det(A)\det(S)\\=\det(S^{-1})\det(S)\det(S^{-1})\det(S)\det(A)\det(A)$ Since $A$ and $S$ are $n \times n$ matrices with $S$ invertible, we have: $\det(S^{-1})\det(S)\det(S^{-1})\det(S)\det(A)\det(A)\\ =\det(S^{-1}S)\det(S^{-1}S)(\det(A))^2\\ =\det(I_n)\det(I_n)(\det(A))^2\\ =(\det(A))^2$ Consequently, $\det(S^{-1}AS)^2=(\det(A))^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.