Answer
a) the graph is shown in the picture
b) $y= (\frac{x}{2})^{2} $
Work Step by Step
a) For some t values corresponding $x$ and $ y$ values are shown in the table:
$x=2t+1\Rightarrow t=\dfrac {x-1}{2}$
$y=\left( t+\dfrac {1}{2}\right) ^{2}=\left( \dfrac {x-1}{2}+\dfrac {1}{2}\right) ^{2}= (\frac{x}{2})^{2} $ so the graph is shown in the picture
b) as we found earlier $y=\left( t+\dfrac {1}{2}\right) ^{2}=\left( \dfrac {x-1}{2}+\dfrac {1}{2}\right) ^{2}= (\frac{x}{2})^{2} $