Answer
Radius: $r=2$
$t=0$:
Point: $(0,2)$
Orientation: clockwise.
One revolution:
$t=2\pi$
Work Step by Step
$x=2~sin~t$
$y=2~cos~t$
$x^2+y^2=4~sin^2t+4~cos^2t$
$x^2+y^2=4(sin^2t+cos^2t)$
$x^2+y^2=2$
$x^2+y^2=2^2$
Radius: $r=2$
$t=0$:
$x=2~sin~0=0$
$y=2~cos~0=2$
Initial point: $(0,2)$
$t=\frac{\pi}{2}$:
$x=2~sin~\frac{\pi}{2}=2$
$y=2~cos~\frac{\pi}{2}=0$
Point: $(2,0)$
Orientation: clockwise.
One revolution:
$t=2\pi$ because it is the first value of $t\gt0$ such that $x=0$ and $y=2$ (Starting position)