Answer
(a) See the graph.
(b) $x^2-y^2=1,~~x\geq1,~~y\geq0$
Work Step by Step
(a)
$t=0$:
$x=sec~0=1$
$y=tan~0=0$
Point: $(1,0)$
$t=\frac{\pi}{4}$:
$x=sec\frac{\pi}{4}=\sqrt 2$
$y=tan\frac{\pi}{4}=1$
Point: $(\sqrt 2,1)$
As $t→\frac{\pi}{4}$ both $x$ and $y$ $→∞$. So, $x\geq1$ and $y\geq0$
(b)
$x=sec~t$
$x^2=sec^2t$
$y=tan~t$
$y^2=tan^2t$
$sec^2t=tan^2t+1$
$x^2=y^2+1$
$x^2-y^2=1$