Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 8 - Section 8.4 - Plane Curves and Parametric Equations - 8.4 Exercises - Page 617: 21

Answer

(a) See the graph. (b) $y^2-x^2=1,~~x\gt0,~~y\gt0$

Work Step by Step

(a) $t=\frac{\pi}{6}$: $x=tan\frac{\pi}{6}=\frac{\sqrt 3}{3}$ $y=cot\frac{\pi}{6}=\sqrt 3$ Point: $(\frac{\sqrt 3}{3},\sqrt 3)$ $t=\frac{\pi}{4}$: $x=tan\frac{\pi}{4}=1$ $y=cot\frac{\pi}{4}=1$ Point: $(1,1)$ $t=\frac{\pi}{3}$: $x=tan\frac{\pi}{3}=\sqrt 3$ $y=cot\frac{\pi}{3}=\frac{\sqrt 3}{3}$ Point: $(\sqrt 3,\frac{\sqrt 3}{3})$ When $t→0$, $x→0$ and $y→∞$. When $t→\frac{\pi}{2}$, $x→∞$ and $y→0$. So, $x\geq0$ and $y\geq0$ (b) $x=tan~t$ $y=cot~t$ $y=\frac{1}{tan~t}$ $y=\frac{1}{x}$ $csc^2t=cot^2t+1$ $y^2=x^2+1$ $y^2-x^2=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.