Answer
Radius: $r=1$
$t=0$:
Initial point: $(0,1)$
Orientation: clockwise.
One revolution:
$t=\pi$
Work Step by Step
$x=sin~2t$
$y=cos~2t$
$x^2+y^2=sin^22t+cos^22t$
$x^2+y^2=1$
$x^2+y^2=1$
$x^2+y^2=1^2$
Radius: $r=1$
$t=0$:
$x=sin~0=0$
$y=cos~0=1$
Initial point: $(0,1)$
$t=\frac{\pi}{4}$:
$x=sin~\frac{\pi}{2}=1$
$y=cos~\frac{\pi}{2}=0$
Point: $(1,0)$
Orientation: clockwise.
One revolution:
$2t=2\pi$
$t=\pi$
It is the first value of $t\gt0$ such that $x=0$ and $y=2$ (Starting position)