Answer
Radius: $r=3$
$t=0$:
Point: $(3,0)$
Orientation: counterclockwise
One revolution:
$t=2\pi$
Work Step by Step
$x=3~cos~t$
$y=3~sin~t$
$x^2+y^2=9~cos^2t+9~sin^2t$
$x^2+y^2=9(cos^2t+sin^2t)$
$x^2+y^2=9$
$x^2+y^2=3^2$
Radius: $r=3$
$t=0$:
$x=3~cos~0=3$
$y=3~sin~0=0$
Initial point: $(3,0)$
$t=\frac{\pi}{2}$:
$x=3~cos~\frac{\pi}{2}=0$
$y=3~sin~\frac{\pi}{2}=3$
Point: $(0,3)$
Orientation: counterclockwise.
One revolution:
$t=2\pi$ because it is the first value of $t\gt0$ such that $x=3$ and $y=0$ (Starting position)