Answer
a) So the graph will be linear (shown in picture)
Arrows show direction which $t$ increasing
b) $y=3t=3\times \dfrac {x+4}{6}=\dfrac {x+4}{2}=\dfrac {1}{2}x+2$
Work Step by Step
$x=6t-4\Rightarrow t=\dfrac {x+4}{6}$
$y=3t=3\times \dfrac {x+4}{6}=\dfrac {x+4}{2}=\dfrac {1}{2}x+2$
İf $ t\geq 0$
$\Rightarrow x\geq 6\times 0-4=-4$
a) So the graph will be linear (shown in picture) and when $x=-4$ then $y=0$ when $x=0$ then $y=2$ And graph will start with $x\geq -4$
Arrows show direction which $t$ increasing
b) as we found previously $y=3t=3\times \dfrac {x+4}{6}=\dfrac {x+4}{2}=\dfrac {1}{2}x+2$