Answer
$\frac{2}{x-5} + \frac{1}{x+3}$
Work Step by Step
$\frac{3x+1}{x^{2} - 2x - 15}$
$\frac{3x+1}{(x-5) (x+3)} = \frac{A}{x-5} + \frac{B}{x+3}$
$3x+1 = A(x+3) + B(x-5)$
$A + B = 3x$
$3A -5B = 1 $
Thus $A = 2 B=1$
Partial Fraction Decomposition = $\frac{2}{x-5} + \frac{1}{x+3}$