Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 10 - Review - Exercises - Page 771: 81

Answer

$(-\frac{87}{26}, \frac{21}{26},\frac{3}{2})$

Work Step by Step

Step 1. Define the following matrices based on the given system of equations: $\begin{array} \\D=\\ \end{array} \begin{bmatrix} 2&-1&5\\ -1&7&0\\5&4&3\end{bmatrix}, \begin{array} \\D_x=\\ \end{array} \begin{bmatrix} 0&-1&5\\ 9&7&0\\-9&4&3\end{bmatrix}, \begin{array} \\D_y=\\ \end{array} \begin{bmatrix} 2&0&5\\ -1&9&0\\5&-9&3\end{bmatrix}, \begin{array} \\D_z=\\ \end{array} \begin{bmatrix} 2&-1&0\\ -1&7&9\\5&4&-9\end{bmatrix}$ Step 2. Calculate the determinants of the above matrices (use column 3 expansions): $|D|=5(-4-35)+3(14-1)=-156$, $|D_x|=5(36+63)+3(0+9)=522$, $|D_y|=5(9-45)+3(18-0)=-126$, $|D_z|=-9(8+5)-9(14-1)=-234$ Step 3. Use the Cramer's Rule: $x=\frac{|D_x|}{|D|}=-\frac{87}{26}$, $y=\frac{|D_y|}{|D|}=\frac{21}{26}$, $z=\frac{|D_z|}{|D|}=\frac{3}{2}$ Step 4. Conclusion: the solution to the system is $(-\frac{87}{26}, \frac{21}{26},\frac{3}{2})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.