Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 10 - Review - Exercises - Page 771: 77

Answer

$(-\frac{1}{12},\frac{1}{12}, \frac{1}{12})$

Work Step by Step

Step 1. Define the following matrices: $\begin{array} \\A=\\ \end{array} \begin{bmatrix} 2&1&5\\ 1&2&2\\1&0&3\end{bmatrix}, \begin{array} \\X=\\ \end{array} \begin{bmatrix} x\\ y\\z \end{bmatrix}, \begin{array} \\B=\\ \end{array} \begin{bmatrix} 1/3\\1/4\\1/6\end{bmatrix}$ Step 2. Rewrite the original system of equations as $AX=B$, thus $A^{-1}AX=X=A^{-1}B$ Step 3. Find the inverse $A^{-1}$ using the procedure given in section 10.5: $\begin{array} \\AI=\\ \end{array} \begin{bmatrix} 2&1&5&|&1&0&0\\ 1&2&2&|&0&1&0\\1&0&3&|&0&0&1\end{bmatrix} \begin{array} \\ \\R_2-R_3\to R_2\\ R_1-2R_3\to R_3 \end{array}$ Step 4. Perform the row operations: $\begin{array} \\AI=\\ \end{array} \begin{bmatrix} 2&1&5&|&1&0&0\\ 0&2&-1&|&0&1&-1\\0&1&-1&|&1&0&-2\end{bmatrix} \begin{array} \\ \\ \\ -2R_3+R_2\to R_3 \end{array}$ Step 5. Perform the row operations: $\begin{array} \\AI=\\ \end{array} \begin{bmatrix} 2&1&5&|&1&0&0\\ 0&2&-1&|&0&1&-1\\0&0&1&|&-2&1&3\end{bmatrix} \begin{array} ( R_1-5R_3\to R_1\\ (R_3+R_2)/2\to R_3 \\ \\ \end{array}$ Step 6. Perform the row operations: $\begin{array} \\AI=\\ \end{array} \begin{bmatrix} 2&1&0&|&11&-5&-15\\ 0&1&0&|&-1&1&1\\0&0&1&|&-2&1&3\end{bmatrix} \begin{array} ( (R_1-R_2)/2\to R_1\\ \\ \\ \end{array}$ Step 7. Perform the row operations: $\begin{array} \\AI=\\ \end{array} \begin{bmatrix} 1&0&0&|&13/2&-3&-9\\ 0&1&0&|&-1&1&1\\0&0&1&|&-2&1&3\end{bmatrix}$ Step 8. We obtain the inverse: $\begin{array} \\A^{-1}=\\ \end{array} \begin{bmatrix} 13/2&-3&-9\\ -1&1&1\\-2&1&3\end{bmatrix}$ Step 9. The solutions: $\begin{array} \\X=A^{-1}B=\\ \end{array} \begin{bmatrix} 13/2&-3&-9\\ -1&1&1\\-2&1&3\end{bmatrix} \begin{bmatrix} 1/3\\1/4\\1/6\end{bmatrix} =\begin{bmatrix} -\frac{1}{12}\\\frac{1}{12}\\\frac{1}{12}\end{bmatrix}$ or $(-\frac{1}{12},\frac{1}{12}, \frac{1}{12})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.