Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 10 - Review - Exercises - Page 771: 82

Answer

$(\frac{860}{41}, -\frac{540}{41}, \frac{10}{41})$

Work Step by Step

Step 1. Define the following matrices based on the given system of equations: $\begin{array} \\D=\\ \end{array} \begin{bmatrix} 3&4&-1\\ 1&0&-4\\2&1&5\end{bmatrix}, \begin{array} \\D_x=\\ \end{array} \begin{bmatrix} 10&4&-1\\20&0&-4\\30&1&5\end{bmatrix}, \begin{array} \\D_y=\\ \end{array} \begin{bmatrix} 3&10&-1\\ 1&20&-4\\2&30&5\end{bmatrix}, \begin{array} \\D_z=\\ \end{array} \begin{bmatrix} 3&4&10\\ 1&0&20\\2&1&30\end{bmatrix}$ Step 2. Calculate the determinants of the above matrices (use column 2 expansions): $|D|=-4(5+8)-1(-12+1)=-41$, $|D_x|=-4(100+120)-1(-40+20)=-860$, $|D_y|=-10(5+8)+20(15+2)-30(-12+1)=540$, $|D_z|=-4(30-40)-1(60-10)=-10$ Step 3. Use the Cramer's Rule: $x=\frac{|D_x|}{|D|}=\frac{860}{41}$, $y=\frac{|D_y|}{|D|}=-\frac{540}{41}$, $z=\frac{|D_z|}{|D|}=\frac{10}{41}$ Step 4. Conclusion: the solution to the system is $(\frac{860}{41}, -\frac{540}{41}, \frac{10}{41})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.