Answer
$\displaystyle s_1 =\dfrac{4}{3}
\\s_2= \dfrac{16}{9}
\\s_3= \dfrac{64}{27}
\\s_4= \dfrac{256}{81}
\\s_5=\dfrac{1024}{243}$
Work Step by Step
We are given that {$s_n$} $=\left(\dfrac{4}{3}\right)^n$
In order to determine the first five terms, we will have to substitute $n=1, 2,3,4,5$ into the given sequence {$s_n$}:
$\displaystyle s_1 = (\dfrac{4}{3})^1=\dfrac{4}{3}
\\s_2= (\dfrac{4}{3})^2=\dfrac{16}{9}
\\s_3= (\dfrac{4}{3})^3=\dfrac{64}{27}
\\s_4= (\dfrac{4}{3})^4=\dfrac{256}{81}
\\s_5=(\dfrac{4}{3})^5=\dfrac{1024}{243}$