Answer
$\dfrac{x}{3}, \space x\ne2$
Work Step by Step
Note that $\dfrac{x^2-2x}{3x-6}=\dfrac{x(x)-2(x)}{3x-3(2)}$.
Factor out $x$ in the numerator and $3$ in the denominator.
$=\dfrac{x(x-2)}{3(x-2)}$
Cancel the common factor $x-2$:
$=\dfrac{x}{3}, \space x\ne 2$
Hence, the lowest term is $\dfrac{x}{3}, \space x\ne 2$.